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Abstract A continuous version of the hierarchical spherical model at dimension d = 4 is
investigated. Two limit distributions of the block spin variable Xγ , normalized with expo-
nents γ = d + 2 and γ = d at and above the critical temperature, are established. These
results are proven by solving certain evolution equations corresponding to the renormaliza-
tion group (RG) transformation of the O(N) hierarchical spin model of block size Ld in the
limit L ↓ 1 and N → ∞. Starting far away from the stationary Gaussian fixed point the tra-
jectories of these dynamical system pass through two different regimes with distinguishable
crossover behavior. An interpretation of this trajectories is given by the geometric theory of
functions which describe precisely the motion of the Lee–Yang zeroes. The large-N limit of
RG transformation with Ld fixed equal to 2, at the criticality, has recently been investigated
in both weak and strong (coupling) regimes by Watanabe (J. Stat. Phys. 115:1669–1713,
2004). Although our analysis deals only with N = ∞ case, it complements various aspects
of that work.
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1 Introduction and Statement of Results

We continue the investigation starting in [2]. In the present work we give a geometric
interpretation to certain trajectories of a first order partial differential equation related to
the renormalization group transformation (RGT) of a d-dimensional hierarchical spherical
model.

1.1 Motivation

The hierarchical O(N) spin model, with Ld = 2 sites per block, has been recently studied
by renormalization group in both weak and strong regimes by Watanabe [21]. Starting from
the uniform “a priori” measure supported in the N -dimensional sphere of radius

√
N , the

critical trajectory of the RGT has shown to converge to the Gaussian fixed point for suffi-
ciently large N . To control such trajectory, which starts far away from the fixed point, the
exactly solved O(∞) trajectory has been used together with two key ingredients: reflec-
tion positivity and the Lee–Yang property of single-site “a priori” measures. The former
ingredient gives uniform convergence of O(N) trajectories to O(∞) trajectories. The latter
property has been previously employed by Kozitsky [15] to establish two central limit theo-
rems. Watanabe’s analysis, based in his joint work with Hara and Hattori [11] on the critical
trajectory for the hierarchical Ising model (N = 1), in contradistinction to Kozitsky’s, and
most of the previous studies of this model, does not restrict the space of “a priori” measures
to a neighborhood of the Gaussian fixed point and is able to deal with the borderline d = 4
case.

Although the analysis of the RGT with Ld ≥ 2 fixed is expected to be simplified consid-
erably in the L ↓ 1 limit (see e.g. [9]), none of the above mentioned results can be carried
to the limit as the two key ingredients do not hold if Ld is not an integer. In order to estab-
lish, in the local potential approximation (L ↓ 1), a weak convergence of the hierarchical
O(N) Heisenberg equilibrium measure to the corresponding spherical equilibrium measure
as N → ∞ an entirely new method of analysis has to be developed from scratch.

In the present investigation we establish central limit theorems for the four-dimensional
hierarchical spherical (N = ∞) model at and above the critical temperature. Our results
are achieved in the local potential approximation that reduces the renormalization group
equation to a nonlinear first order partial differential equation. A geometric function inter-
pretation of the O(∞) trajectory is thus given with the help of an explicit solution obtained
by the method of characteristics. It follows from our analysis that the Lee–Yang zeroes reach
a limit distribution as the Gaussian fixed point approaches but their support moves away to
infinity.

1.2 The Model

The hierarchical Heisenberg model on a finite box �K = {0,1, . . . ,LK − 1}d ⊂ Z
d of size

n = LdK is given by the O(N) invariant equilibrium measure

dν(N)
n (x) = 1

Z
(N)
n

exp

{
1

2
(x,Ax)�n

} n∏
j=1

dσ
(N)

0 (xj ) (1.1)
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where x = (x1, . . . , xn) denotes an element of the configuration space �n = R
N × · · ·× R

N ;
A = J ⊗ I the tensor product of the hierarchical coupling matrix J (whose quadratic form

(s,−J s)�K
= −(L − 1)

K∑
k=1

L−2k
∑

r∈�K−k

(Bks)2
r ,

(Bs)i = 1

Ld/2

∑
j∈{0,...,L−1}d

sLi+j ,

(1.2)

coincides with Dyson’s hierarchical energy [7] when there are Ld = 2 sites per block)1 with
the N × N identity matrix I ; σ0(x) the “a priori” uniform measure on the N -dimensional
sphere |x|2 = βN of radius

√
βN with β the inverse temperature.

1.3 Recursion Relations

The invariance of J under block transformation (1.2) allows to establish a recursion relation:

σ
(N)
k (x) = 1

Ck

ecγ (L−1)|x|2/2σ
(N)

k−1 ∗ · · · ∗ σ
(N)

k−1︸ ︷︷ ︸
Ld-times

(Lγ/2x) (1.3)

on the space of single-site “a priori” measures in R
N with initial data σ

(N)

0 (x). Here, ∗ de-
notes the convolution product

ρ ∗ η(x) =
∫

RN

ρ(x − x ′) dη(x ′),

Ck is chosen so that σ
(N)
k is a probability measure and

cγ =
{

1 if γ = d + 2,

L−2k if γ = d.
(1.4)

The “a priori” measure σ
(N)
k at the step k is defined by integrating (1.1) over �n with the

value of k-th block spin fixed:

∫
δ((Bk ⊗ I )y − x)dν(N)

n (y) = 1

Z
(N)

Ld(K−k)

exp

{
1

2
(x,Ax)�

Ld(K−k)

}Ld(K−k)∏
j=1

dσ
(N)
k (xj )

is a marginal measure on �Ld(K−k) that preserves the form (1.1).
In terms of their characteristic functions

φ
(N)
k (z) =

∫
exp(ix · z)dσ

(N)
k (x), (1.5)

(1.3) reads

φ
(N)
k (z) = 1

Nk

exp

(−L + 1

2
cγ �

)
(φ

(N)

k−1(L
−γ /2z))Ld

(1.6)

1The factor L−1 is chosen so that the hierarchical Laplacean converges, as L ↓ 1, to a continuum hierarchical
Laplacean (see [2, 9]).
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for k ≥ 1 with

φ
(N)

0 (z) = (N/2)

(
√

βN |z|/2)N/2−1
JN/2−1(

√
βN |z|) := ϕ

(N)

0 (|z|). (1.7)

Here, exp(t�) is the semi-group generated by the N -dimensional Laplacean operator � =
∂2/∂z2

1 + · · · + ∂2/∂z2
N , Nk is chosen so that φk(0) = 1 holds for all k = 1, . . . ,K and Jα(x)

is the Bessel function of order α (see (20) in Chap. VII of [3] for an appropriate integral
representation). Note that φ

(N)
k (z) = ϕ

(N)
k (r) depends only on r = |z| = √

z · z.

1.4 Thermodynamical Functions

The macroscopic behavior of the model is described by the limit distribution of the block
variable

X
γ

n,N = 1√
nγ/d

n∑
j=1

xj , (1.8)

where γ is chosen in order the limit law to be attained. The characteristic function associated
with the block variable X

γ

n,N with γ = d + 2 is given by

�(N)
n (z) =

∫
exp

(
iL−K(d+2)/2

(
n∑

j=1

xj

)
· z

)
dν(N)

n (x)

=
∫

exp(ix · z)dσ
(N)
K (x) = ϕ

(N)
K (|z|).

As n goes to infinity, Xγ

n,N converges in distribution to X
γ

N if ϕ
(N)
K (r) converges at every point

r ≥ 0 to a function ϕ(N)(r) that is continuous at r = 0, by continuity theorem (see e.g. [7]).
The convergence of ν(N) = limn→∞ ν(N)

n to the equilibrium measure ν of the spherical model
is more subtle and we analogously employ: X

γ

N is said to converge to Xγ in distribution if

lim
N→∞

(ϕ(N)(
√

Nr))1/N = ϕ(r)

exist for every point r ≥ 0, is continuous at r = 0 and coincides with the corresponding
characteristic function of the spherical model. The rescaling is seen to be necessary already
at the initial function ϕ

(N)

0 (r) (see Proposition 2.1).
The statements about convergence are independent of the order of the limits of n → ∞

and N → ∞. This has been shown in [2] adapting a method employed by Kac and Thomp-
son [13] for the hierarchical equilibrium measure (1.1) with γ = d , Ld ≥ 2 an integer and
β different from the critical inverse temperature βc = βc(d,L) of the hierarchical spherical
model. In [2], Xd is shown (see Theorem 1.1 and Remark 4.4) to be Gaussian with mean
zero and variance −1/μ where μ = μ(β) is implicitly defined by

β =
∫

1

λ − μ
d�(λ) (1.9)

where �(λ) is the density of eigenvalues (counted multiplicities) of the hierarchical
Laplacean −�H = L−1

L2−1
I − J . Note J is not invariant under translation by a vector in Z

d ,



Hierarchical Spherical Model from a Geometric Point of View 815

property that is required for coupling matrices in [13]. Some statements about hierarchical
spherical model hold also in the limit as L ↓ 1, in which case (1.9) reads (see Sect. 3 of [2])2

1 − β

4
= −2μ ln

(
1 − 1

2μ

)
(1.10)

for d = 4. Central limit theorems are established in the present work directly from the L ↓ 1
limit.

1.5 Local Potential Approximation

Let

U(t, z) = − lnφ
(N)
k (z) (1.11)

be defined for t = k lnL. As k → ∞ together with L ↓ 1 so that k lnL is kept fixed at a
positive real number t , (1.4) converges to

cγ (t) =
{

1 if γ = d + 2,

e−2t if γ = d

and we have

Ut = lim
L↓1

U(t, z) − U(t − lnL,z)

lnL

= lim
k→∞

k

t

{
− ln

[
1

Nk

exp

{
− t

2k
cγ �

}
(φ

(N)

k−1(e
−γ t/2kz))etd/k

]
+ lnφ

(N)

k−1(z)

}
.

Consequently, (1.11) satisfies the initial value problem

Ut = −cγ

2
(�U − |Uz|2) + dU − γ

2
z · Uz + cγ

2
�U(t,0) (1.12)

with

U(0, z) = − lnφ
(N)

0 (z). (1.13)

The last term in the right hand side ensures that U(t,0) = 0 for all t ≥ 0. Note that this
property is satisfied by the initial condition because of the normalization

∫
dσ

(N)

0 (x) =
φ

(N)

0 (0) = 1.
We shall prove two limit theorems (Theorems 2.2 and 4.1) summarized as

lim
t→∞ lim

N→∞
1

N
U(t,

√
Nz) =

{ |z|2 if β = βc,

−|z|2/2μ if β < βc

uniformly in compact subsets of ζ ∈ C with �e(ζ ) = −|z|2. The first, when the sum (1.8) is
normalized with abnormal exponent γ /d = 1 + 2/d , holds at the critical point

β = βc(d) = 2d

d − 2
, (1.14)

d ≥ 4. The second, for normal exponent γ /d = 1, holds for any β < βc(d) and d > 2. In
both cases only the borderline d = 4 will be considered for brevity.

2By monotonicity, there exist a unique solution μ = μ(β) < 0 defined for 0 < β < 4.



816 D.H.U. Marchetti et al.

1.6 Conformal Mapping

Although continuity at |z| = 0 suffices for these limit theorems, the “characteristic function”
limN→∞ exp(−1

N
U(t,

√
Nz)) is shown to be an analytic function that converges, as t → ∞,

to an entire function. In addition, thanks to an explicit solution of the initial value problem
(1.12) and (1.13) at N = ∞, the whole trajectory can be described by the geometric function
theory.

The initial value (1.13) is a function of |z|2 and (1.12) preserves this property. So, we
define

u(t, x) = lim
N→∞

1

N
U(t,

√
Nz) (1.15)

for x = −|z|2 and let, for each t ≥ 0, the partial derivative ux(t, ζ ) of u be extended as an
analytic function of ζ = x + iy with y > 0. We prove in Theorem 3.2 that ux(t, ζ ), t ≥ 0,
map the upper half-plane H conformally into a decreasing family of open convex sets

ux(t,H) = �t ⊂ �0 = ux(0,H)

contained in H, and there is a one-to-one and onto relation between this family and the
trajectory O at the critical inverse temperature βc(4) = 4 converging to the Gaussian fixed
point. Analogous theorem holds for the trajectory corresponding to normal fluctuations.

The boundary of �t is the union of a segment Iα := [−α,0] extending from a point
−α = −α(t) < 0 up to the origin over the real line and a convex curve q = h(t,p), p ∈ Iα ,
with h(t,−α) = h(t,0) = 0. h(t, Iα) = {h(t,p),p ∈ Iα} encodes all informations about O
since it corresponds to the image of a branching cut of ux(t, ζ ). The principal branch of
ux(t, ζ ) belongs to the Pick class of analytical function and admits to be represented as

ux(t, ζ ) = −1 +
∫ ∞

−∞

(
1

λ − ζ
− 1

λ − 1/2

)
dμ(t, λ) (1.16)

where dμ = ρdλ is absolutely continuous (with respect to Lebesgue) Borel measure. Al-
though (1.16) is not a canonical representation,

ρ(t, λ) = 1

π
lim
η↓0

(ux(t, λ + iη))

holds as well. Denoting by �(t) = (−∞,−d(t)) the support of μ in (1.16), we have

−α(t) = ux(t,−d(t)),

h(t, Iα) = (ux(t,�(t) + i0)).

The support �(t) of μ(t, λ) determines the location of the Lee–Yang zeroes as it can
be seen by representing ϕ

(N)
k (r) into an infinite canonical product (for ϕ

(N)

0 (r), see proof of
Proposition 2.1). By (1.11) and (1.15), these zeroes are poles of ux(t, ζ ) that become dense
over the semi-line �(t) as N → ∞. As t goes to ∞, α(t) → 3/2, d(t) → ∞ leading �(t)

to an empty set ∅ as all Lee–Yang singularities are expelled to infinity. As a consequence,
ux(t, ζ ) → −1 uniformly in each compact set of C.

The motion of the Lee–Yang zeroes can be attained from the moments of their distrib-
ution [19]. The moments satisfy an infinite system of ordinary first-order differential equa-
tions which is reduced in [11, 21] to a finite system by Lee–Yang inequalities. The presence
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of one-dimension unstable manifold makes this system very sensitive to truncation and no
simplification occurs in the limit N → ∞. This has to be contrasted with the simple geo-
metric analysis in Sect. 3 from which the dynamics of Lee–Yang zeroes can be described
globally.

1.7 Outline

In Sects. 2 and 4 we prove Theorems 2.2 and 4.1, which are Gaussian limit laws for the
spherical model on the local potential approximation. Section 3 presents an interpretation of
explicit solution of the associate nonlinear first order partial differential equation according
to the geometric function theory. A conclusion with final remarks is given in Sect. 5.

2 Central Limit Theorem

2.1 The Radial Equation

The initial value (1.13) is a function of |z|2 = r2 and the spherical symmetry is preserved
by the evolution equation (1.12). So, it suffices to take into account the radial component of
z · ∂/∂z and �, respectively given by r∂/∂r and

1

rN−1

∂

∂r

(
rN−1 ∂

∂r

)
= ∂2

∂r2
+ (N − 1)

1

r

∂

∂r
.

Defining

u(N)(t, x) = 1

N
U(t,

√
Nz) (2.1)

for x = −|z|2, the initial value problem (1.12) and (1.13) for γ = d + 2 reads

u
(N)
t = 2

N
xu(N)

xx + u(N)
x − 2x(u(N)

x )2 − γ xu(N)
x + du(N) − u(N)

x (t,0) (2.2)

with u(N)(0, x) = U(0,
√

Nz)/N . As N → ∞ , the initial function converges to a limit:

Proposition 2.1

lim
N→∞

u(N)(0, x) =
∫ x

0

−β

1 + √
1 + 4βx ′ dx ′ ≡ u0(x) (2.3)

and the convergence is uniform in any compact set of the slit plane C\(−∞,−1/4β].

Proposition 2.1 is proven in Sect. 3. Watanabe established (2.3) writing u0(x) as a contin-
ued fraction of Gauss (see Lemma 4.1 of [20]). Additional properties are obtained by taking
into account that u′

0 is an analytic function of the Pick class PI(β) which can be continued
across the interval I (β) = (−1/4β,∞).
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2.2 Viscosity Limit Equation3

Taking N → ∞ in (2.2) we are led to a first order partial differential equation for (1.15)

ut = ux − 2xu2
x − γ xux + du − ux(t,0) (2.4)

which can be solved by the method of characteristics. To avoid dealing with a nonlinear
equation we apply the Legendre transformation to (2.4). Let

w(t,p) = max
x≥0

(xp − u(t, x)) = x̄p − u(t, x̄) (2.5)

be the Legendre transform of u with respect to x where x̄ = x̄(t,p) is attained at the value
x for which

p = ux(t, x) (2.6)

has a solution for every t ≥ 0 and p in a certain domain depending on t .
Assuming w(t,p) is a continuously differentiable and uniformly convex function of p

such that limp→∞ w(t,p)/|p| = ∞ holds for all t ≥ 0, the original function u(t, x) can be
recovered by inverse Legendre transformation

u(t, x) = max
p∈R

(xp − w(t,p)) = xp̄ − w(t, p̄) (2.7)

where p̄ = p̄(t, x) solves x = wp(t,p) for p. Note that, by differentiating (2.5) with respect
to t and p together with (2.6), we have

wt = −ut ,

wp = x̄ + (p − ux(t, x̄))x̄p = x̄.
(2.8)

Hence, wp solves (2.6) for x. We are going to show that wp(t,p) is a monotone increasing
function of p for every t ≥ 0 therefore, w(t,p) is convex and a well defined Legendre trans-
form of u which, by (2.7), is also uniformly convex. It follows by duality of the Legendre
transformation that

p̄(t, x) = ux(t, x) (2.9)

which, in view of the presence of ux(t,0) in (2.4), gives

u(t, x) =
∫ x

0
p̄(t, x ′)dx ′. (2.10)

Using γ = d + 2 together with (2.5) and (2.8), (2.4) becomes

wt = −p + 2p(1 + p)wp + dw + p̄0

where p̄0 = p̄0(t) is implicitly defined by the equation 0 = wp(t,p). Writing v = wp = x̄ we
arrive, by differentiating both sides of the above equation with respect to p, at the following
initial value problem

vt − 2p(1 + p)vp = −1 + (γ + 4p)v (2.11)

31/N plays the role of viscosity since it is in front of the Laplacean as in the hydrodynamic equation of
incompressible fluid. Viscosity solution (or limit) also refers to a method for obtaining “weak solutions” of
semilinear first order partial differential equations (see e.g. [8]).
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with

v(0,p) = 1

2p
+ β

4p2
≡ v0(p). (2.12)

Note that v(0,p) = x̄(0,p) is the value x that solves (2.6) at t = 0:

p = ux(0, x) = u′
0(x) = −β

1 + √
1 + 4βx

(2.13)

by (2.8) and (2.3).

2.3 Main Result

Our main result of this section is as follows

Theorem 2.2 Equations (2.11) and (2.12) with d = 4 (γ = 6) are solved by

v(t,p) = 1

2p
+ 1

p2
− 4 − β

4p2
e2t − 1 + p

p3
ln(1 + p − pe2t ). (2.14)

At β = βc = 4, there is a unique solution p̄ = p̄(t, x) of

v(t,p) = x (2.15)

holomorphic in a neighborhood of origin, that converges, as t → ∞, to −1 in every compact
set of C. Together with (2.10) and (2.1), this implies convergence to the Gaussian equilib-
rium solution of (1.12):

lim
t→∞ lim

N→∞
1

N
U(t,

√
Nz) = |z|2

uniformly in compacts.

Remark 2.3 The use of Legendre transform in the renormalization group transformation
for the O(N) Heisenberg model in the large-N limit goes back to Shang–Keng Ma’s work
(see [17] and references therein). It is also reminiscent of the method of Laplace (see eqs.
(3.1.13)–(3.1.16) of [14]). In ref. [21], Watanabe solved the discrete flow equation (1.6) with
Ld = 2 in the N → ∞ limit and partial differential equation is employed only for the heat
semigroup part in (1.6). Theorem 2.2 extends Watanabe’s result to the flow equation (1.12)
at the L ↓ 1 limit.

Remark 2.4 Theorem 2.2 treats the border case d = 4 but holds for any d ≥ 4. The proof
of the theorem can also be adapted to deal with the convergence to nontrivial equilibrium
solutions of (1.12) at β = βc(d), given by (1.14), for 2 < d < 4. For instance, we have

v(t,p) = 1

2p
+ 3

2p2
− 6 − β

4p2
et − 3

√
(1 + p)/p

4p2
ln

(1 − e−t
√

(1 + p)/p)(1 + √
(1 + p)/p)

(1 + e−t
√

(1 + p)/p)(1 − √
(1 + p)/p)

for d = 3. At βc(3) = 6 the solution p̄ = p̄(t, x) of (2.15) converges, as t → ∞, to a function
defined for x ≥ x0 � −0.15 whose profile is shown in Fig. 1. In this case, the limit function
limN→∞ exp(−U(t,

√
Nz)/N) differs significantly from the Gaussian function for |z| small.
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Fig. 1 The profile of limt→∞ p̄(t, x) for a trivial (doted line) and nontrivial (solid line) fixed points

Proof Theorem 2.2 will be proven by solving (2.11) along the characteristics p(t) =
p(t;p0) (see e.g. [8]). Writing V (t) = v(t,p(t)), (2.11) is reduced to a pair of ordinary
differential equations

ṗ = −2p(1 + p),

V̇ = −1 + (6 + 4p)V
(2.16)

satisfying initial conditions p(0) = p0 and

V (0) = V0 = v0(p0). (2.17)

Integrating the first equation of (2.16)

∫ p

p0

dp′

p′(1 + p′)
=

∫ p

p0

(
1

p′ − 1

1 + p′

)
dp′ = −2

∫ t

0
dt ′

gives

p(t) = p0e
−2t

1 + p0 − p0e−2t
. (2.18)

The second equation of (2.16) is a nonhomogeneous linear equation. The homogeneous
equation V̇ = (6 + 4p)V can be integrated:

V (t) = V0 exp

(
6t + 4

∫ t

0
p(s)ds

)

= V0e
6t (1 + p0 − p0e

−2t )2.

Using the variation of constants formula (see Theorem 3.1 of [1]), the solution to the second
equation of (2.16) is given by

V (t) = e6t (1 + p0 − p0e
−2t )2(V0 − J0) (2.19)

with

J0 =
∫ t

0

e−6sds

(1 + p0 − p0e−2s)2
,

by changing variable ζ = e−2s , given by

J0 = 1

2p3
0

[
(1 + p0)

2 1

1 + p0 − p0ζ
+ 2(1 + p0) ln(1 + p0 − p0ζ ) + p0ζ

]1

exp(−2t)

.
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After some manipulations together with (2.17) and (2.12), this gives

V0 − J0 = β − 6

4p2
0

− 1

2p3
0

+ (1 + p0)
2

2p3
0(1 + p0 − p0e−2t )

+ e−2t

2p2
0

+ 1 + p0

p3
0

ln(1 + p0 − p0e
−2t ).

(2.20)
Equation (2.14) follows by plugging this result into (2.19) with p0 as a function of t and p:

p0(t,p) = pe2t

1 + p − pe2t

obtained by solving (2.18) for p0.

The Inverse Function Theorem We now solve (2.15) for p at the critical point β = βc(4) =
4. By (2.14), it can be written as

xp2 − p

2
− 1 = −1 + p

p
ln(1 + p − pe2t ) ≡ g(t,p). (2.21)

The first of two ingredients we need is

Lemma 2.5 For p < (e2t −1)−1, g is a monotone increasing function of p diverging to −∞
logarithmically as p → −∞ and satisfying g(t,−1) = 0 and g(t,0) = (e2t − 1).

Proof of lemma Clearly, g is a well defined function of p for 1 + p − pe2t = 1 −
p(e2at − 1) > 0 with logarithmic divergence at p = −∞. We have, by an explicit com-
putation,

gp(t,p) = e2t − 1

1 − p(e2t − 1)
+ 1

p2
f (p(e2t − 1))

where

f (w) = ln(1 − w) + 1

1 − w
− 1 ≡ h(w) − 1. (2.22)

If f (w) ≥ 0 for all w < 1 then gp(t,p) > 0 in the domain p < (e2t − 1)−1 and the
monotonicity statement is proven. In fact, h(0) = 1 and

h′(w) = w

(1 + w)2

implies that w = 0 is the absolute minimum of h proving an equivalent statement: h(w) > 1
for w < 1 different from 0. �

For x ≤ 0, the quadratic polynomial

Q(x,p) := xp2 − p

2
− 1

in the left hand side of (2.21) is bounded from above by a linear function:

Q(x,p) ≤ Q(0,p) = −p

2
− 1,
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Fig. 2 Graphic of intersections of g(t,p) (solid line) with Q(x,p) for x = 0 (dotted line) and x �= 0 (dashed
lines)

and attains its maximum value −1
16x

− 1 at pmax = 1
4x

. Since pmax → 0 as x → −∞, there
is a value xmax = xmax(t) such that no real solutions of (2.15) exist for x < xmax. On the
other hand, as the graph of g(t,p) intercepts the graph of Q(x,p) in two points (one point)
for any 0 > x > xmax(t) (x ≥ 0) and t ≥ 0, there exist at least one real solution of (2.15)
for x ≥ xmax (see Fig. 2). We shall discard the solution associated with the second point of
interception since it diverges at x = 0.

Now, let t ≥ 0 and let x and p be real parts of numbers in C: z = x + iy and η = p + iq .
Although the solution η = η(t, z) of z = v(t, η) is a multivalued function of z, only one
branch, denoted by η̄(t, z), is regular at z = 0. Note that η̄(t,0) exists for all t ≥ 0 and is
a real valued monotone increasing function of t ≥ 0 satisfying −2 ≤ η̄(t,0) ≤ −1 as the
graph of g(t,p) always intercepts the straight line Q(0,p) = −p/2 − 1 at some negative
point p∗(t) within that range (see Fig. 2) and p∗(t) = η̄(t,0) by definition.

It follows that v(t, η) is holomorphic in �e(η) < 0 with v(t, η̄(t,0)) = 0 and

vη(t, η̄(t,0)) = 1

2η̄2
+ 1

η̄4
ln(1 − (e2t − 1)η̄) + 1

η̄2

(
1 + 1

η̄

)
e2t − 1

1 − (e2t − 1)η̄
> 0 (2.23)

and these are the assumptions of our second ingredient (see Theorem 9.4.1 of [12] for a
proof).

Theorem 2.6 Let R > r > 0 and η̄ ∈ C be such that v(t, η) is holomorphic in DR(η̄) =
{η ∈ C : |η − η̄| < R}, v(t, η̄) = 0, vη(t, η̄) > 0 and v(t, η) �= 0 for 0 < |η − η̄| < r . Then the
contour integral

η̄(t, z) := 1

2πi

∫
C
η

vη(t, η)

v(t, η) − z
dη
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where C = {η ∈ C : |η − η̄| = ρ} for some ρ < r , defines a holomorphic function in {z :
|z| < m} where

m = min
θ

|v(t, η̄ + ρeiθ )|.
Moreover, η = η̄(t, z) is the unique solution of z = v(t, η) regular at z = 0 in this domain.

For fixed t , let R = R(t) be such that DR(η̄(t,0)) ⊂ {�e(η) < 0} and note that we can
always take R large enough to include η = −1. Let r < R be so that v(t, η) �= 0 for 0 <

|η − η̄(t,0)| < r . This is always possible by continuity in view of (2.23). Finally we pick
ρ < r which gives the largest m. As t gets large, η̄(t,0) approaches −1 and ρ may be chosen
so that m(t) = minθ |v(t, η̄(t,0)+ρeiθ )| grows like t , namely, for ρ close to 1/2. In the limit
t → ∞, η̄(t, z) becomes holomorphic in the entire complex plane.

To describe the asymptotic behavior of η̄(t, z) as t → ∞, (2.15) can be written as

v(t, η̄) = 1

2η̄2
− η̄ + 1

η̄3

{−η̄

2
+ ln(−η̄) + 2t + ln

(
1 − η̄ + 1

η̄
e−2t

)}

= 1

2
+ 2t (η̄ + 1) + O(t(η̄ + 1)2, (η̄ + 1)) = z

which gives

η̄(t, z) = −1 − 1

2t

(
1

2
− z

)
+ R(t, z)

where, by Theorem 2.6, R is a regular function of z for |z| < m(t) which goes to 0 faster
than 1/t , concluding the proof of Theorem 2.2. Note that

lim
t→∞ lim

N→∞
1

N
U(t,

√
Nz) = lim

t→∞u(t, x) =
∫ x

0
lim
t→∞ p̄(t, x ′)dx ′ = −x = |z|2

and U0(z) = |z|2 is an equilibrium solution of (1.12), for any number of components N . �

Remark 2.7 Figure 3 shows the solution v(t,p) of (2.11), for various t . For t = 0, v(0,p) =
v0(p) is a monotone increasing (decreasing) function of p ∈ (−4,0) (p ∈ (−∞,−4)) and
its inverse v−1

0 (x) = u′
0(x) is defined for x ∈ (−1/16,∞). For t > 0, there is a unique neg-

ative value −l(t) (with l(0) = 4), given by vp(t,−l(t)) = 0, such that v(t,p) is monotone
decreasing if −∞ < p < −l(t) and monotone increasing if −l(t) ≤ p < 0. The inverse
function v−1(t, x) = ux(t, x) has two branches but only the one with v−1(0, x) = u′

0(x) con-
verges to −1 in any compact interval inside (−d(t),∞) with −d(t) = v(t,−l(t)) < −1/16
for all t > 0 and d(t) → ∞ as t → ∞.

3 Geometry of the Scaling Flow

3.1 Critical Trajectory

The scaling flow u(t, x), defined by (1.11) and (2.1), is the cummulant generating function
of the block spin variable at scale t . The flow is determined by its partial derivative ux(t, x)

(see (2.10)) and Theorem 2.2 exhibits a single trajectory, in the (viscosity) limit N → ∞,

O(u′
0 → −1) = {ux(t, x), t > 0 : ux(0, x) = u′

0(x), ux(∞, x) ≡ −1},
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Fig. 3 Profile of (2.14) for t = 0
(solid line), 10 (long dashes),
105 (short dashes) and 1020

(dots) and p in a neighborhood of
p = −1

that starts at t = 0 from the initial function (2.13) and converges, as t goes to ∞, to the
stationary solution −1, implicitly defined by (2.15) and (2.9). In this subsection we identify
the class of functions where the flow is defined and give a geometric function theory de-
scription of this trajectory that establishes a one-to-one and onto relation between the orbit
O(u′

0 → −1) and the time dependent convex domains �(t) = ux(t,H), t ≥ 0, formed by
images under ux of the upper half-plane H = {z = x + iy ∈ C : y > 0}. Analytical and nu-
merical techniques are combined in order the conformal equivalence between �(t) and H

to be explicitly verified for all t .

3.2 Analytic Continuation of Initial Value

Let us begin by extending Watanabe’s proof of Proposition 2.1 to the upper half-plane H.
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Proof of Proposition 2.1 Let φν(ξ) = ξJν(ξ)/Jν−1(ξ) be defined for ν ≥ 1 and ξ ∈ C. The
Bessel recursion relation

Jν−1(ξ) + Jν+1(ξ) = 2ν

ξ
Jν(ξ)

generates a continued fraction of Gauss (see Chap. XVIII of [20]):

φν(ξ) = 2

ν

(ξ/2)2

1 − 1
2ν

φν+1(ξ)
= 2

ν

(ξ/2)2

1 − 1
ν(ν+1)

(ξ/2)2

1− 1
2ν+2 φν+2(ξ)

(3.1)

uniformly convergent over the domain

1

ν(ν + 1)
|ξ |2 ≤ 1, (3.2)

by Worpitzky’s Theorem (see [20], p. 42).
Let ϑN(x) := U(0,

√
Nz)/N with x = −|z|2. Equation (1.13) together with (1.7) and the

Bessel recursion relation νJν(ξ) − ξJ ′
ν(ξ) = ξJν+1(ξ), gives

xϑ ′
N(x) = 1

2N

{
(N/2 − 1)JN/2−1(i

√
βxN) − i

√
βxNJ ′

N/2−1(i
√

βxN)

JN/2−1(i
√

βxN)

}

= 1

2N
φN/2(i

√
βxN). (3.3)

We take ξ = i
√

βxN and ν = N/2 in (3.1) and write

1

2N
φN/2(i

√
βxN) = −1

2

a0

1 − a1
1− a2

1−
...

.

As N goes to infinity,

ak = −βx

(1 + 2k
N

)(1 + 2k+2
N

)

converges to −βx uniformly over the domain (3.2) for any integer k ≥ 0 and, consequently,
xϑ ′

N(x) converges over the same domain to a periodic continued fraction. We thus have

xu′
0(x) = lim

N→∞
xϑ ′

N(x) = −1

2

βx

1 + βx

1+ βx

1+
...

= −βx

1 + √
1 + 4βx

(3.4)

where the third equality is −1/2 times the solution φ of

φ = βx

1 + φ

that is positive for positive x. This yields (2.3) in view of the normalization ϑN(0) = 0. Note
that the limit holds for any x in the domain

|4βx| ≤ 1 (3.5)
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of complex plane and this is sharp for the limit function u0 since (−∞,−1/4β] is a branch-
ing cut of u′

0.

Lee–Yang Zeroes Both functions ϑ ′
N(x) and u′

0(x) can be analytically continued to the
upper half-plane and extended, by reflection, to the slit domain C\(−∞,−1/4β]. As φν(ξ)

is a meromorphic (even) function of ξ , it can be written as

φν(ξ) = ξ 2
∑
n≥1

1

α2
n,ν−1 − ξ 2

(3.6)

where αn,ν , n ≥ 1, are zeroes of the Bessel function Jν . So, the limit N → ∞ of (3.3)
together with the asymptotic behavior of the Bessel’s zeroes,

αn,N/2−1 ∼ (N − 1)
π

4
+ (2n − 1)

π

2

for n large, gives

u′
0(x) = lim

N→∞
ϑ ′

N(x) = lim
N→∞

1

2N

∑
n≥1

−β

α2
n,N/2−1

N2 + βx

= 1

2π

∫ ∞

1/4

β

−g(s) − βx
ds (3.7)

for some positive function g satisfying g(s) ∼ s2 for large s. Note that {αn,N/2−1, n ≥ 1} are
the Lee–Yang zeroes of the “a priori” initial measure (1.7) and, by (1.13) and (1.15), they
become dense over an interval of real line.

Pick Class of Functions Let P denote the class of functions

f (ζ ) = u(ζ ) + iv(ζ ), ζ = x + iy,

analytic in the upper half-plane H with positive imaginary part: v(ζ ) ≥ 0 if y > 0 (see e.g.
[6], Chap. II). The class of functions P forms a convex cone and is closed under composi-
tion:

(1) af1 + bf2 ∈ P

(2) f1 ◦ f2 ∈ P

hold for any a, b ≥ 0 and f1, f2 ∈ P .
A linear function a + bζ , a ∈ R and b > 0, and the function −1/ζ are clearly in P since

both are one-to-one and onto maps of H into itself. It thus follows by (3.6), together with
the properties (1) and (2), that φν(ζ ) is in P and, in the topology of uniform convergence on
compact subsets of H, the sequence (ϑ ′

N)N≥1 converges to ϑ ′∞ in P ([6], Sect. 4 in Chap. II).
Note the following equality ϑ ′∞(x) = u′

0(x) in the domain (3.5) and u′
0 is the composition of

four Pick functions: 1+βζ ,
√

ζ , (1+ζ )/β and −1/ζ . This implies that u′
0 ∈ P and equality

between first and last expression in (3.4) holds with x replaced by ζ ∈ H, concluding the
proof of Proposition 2.1. �

3.3 Integral Representation

A function f (ζ ) = u(ζ ) + iv(ζ ) is in the Pick class if and only if has a unique canonical
integral representation [6]

f (ζ ) = aζ + b +
∫ ∞

−∞

(
1

λ − ζ
− λ

λ2 + 1

)
dμ(λ) (3.8)
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where a = lim
y→∞f (iy)/iy ≥ 0, b = u(i) is real and μ is a positive Borel measure on R such

that
∫
(λ2 + 1)−1dμ(λ) < ∞. In addition,

μ((a, b)) + μ({a}) + μ({b})
2

= lim
y↓0

1

π

∫ b

a

v(x + iy)dx (3.9)

holds for any finite interval (a, b) and determines μ uniquely from f .
The initial condition u′

0(x) of the flow ux(t, x) goes to 0 as x goes to infinity (in any
direction of the complex plane). Consequently, a of its canonical representation vanishes. In
addition, b can be identified with the second integral. So, if

f0(ζ ) =
∫ ∞

−∞

1

λ − ζ
dμ(λ) (3.10)

is defined with dμ(λ) = ρ(λ)dλ an absolutely continuous measure w.r.t. the Lebesgue mea-
sure dλ:

ρ(λ) = 1

4π

√
4(−λ) − 1

(−λ)
(3.11)

whose support is −∞ < λ < −1/4, then

u′
0(x) = βf0(βx)

by (3.9). Note that
∫ ∞

−∞ λ−1dμ(λ) = −1/2 agrees with f0(0), by an explicit integration.
Equation (3.10) together with (3.7) leads to the following relation between (3.11) and the
empirical density

√
g(s) of Lee–Yang zeroes: 2πρ(λ) = [(−g′ ◦ g−1)(λ)]−1.

3.4 Geometric Function Theory

By the Riemann mapping theorem (see e.g. [10]) if an open set � is topologically equivalent
to H (i.e. � and H are homeomorphic) then � is also conformally equivalent to H and
there exist a biholomorphic (holomorphic one-to-one and onto) mapping f from � to H. In
some cases f can be made uniquely defined in �. The conformal equivalence of open sets
provides qualitative informations on the trajectory O(u′

0 → −1). As a function of the Pick
class, u′

0 maps H into itself but we can be more specific about the image of H by u′
0. From

here on we fix β at the critical value βc(4) = 4. We denote the upper semi-disc of radius r

centered at x0 by

Sr (x0) = {ζ = x + iy ∈ H : (x − x0)
2 + y2 < r2}

and let St be the class in P indexed by t ∈ R+ satisfying

(i) ϕ is an univalent function (one-to-one)
(ii) ϕ(ζt ) = ζt for some complex number ζt

(iii) ϕ(1/2) = −1
(iv) ϕ(ζ̄ ) = ϕ̄(ζ ).

Proposition 3.1 u′
0 maps the upper half-plane H conformally into the interior of the upper

semi-disc of radius 2 centered at −2:

u′
0(H) = �0 = S2(−2)
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and no other function in S0 maps H into �0. Hence, there is a one-to-one and onto relation
between �0 and the initial function u′

0 of critical trajectory O(u′
0 → −1) in the class S0 of

functions with fixed point ζ0 given by the complex root of 2x3 − x − 2.

Proof By (2.15) and (2.6), the inverse of u′
0, given by

v0(p) = p + 2

2p2
, (3.12)

is the initial condition (2.12) of the linear evolution equation (2.11). Hence

�0 = {η = p + iq ∈ H : (v0(p + ip)) > 0} (3.13)

and this is equivalent, by (3.12), to the following inequalities

q(p2 − q2) − 2pq(p + 2) > 0, q > 0

which can be written as the upper semi-disc S
+
2 (−2): (p + 2)2 + q2 < 4, q > 0.

Since

v′
0(p) = −p + 4

2p3

does not vanish or diverge for any p in �0 but at edge points p = −4 and p = 0 in the closure
�0 of �0, we conclude by (3.12) that u′

0(H) = �0 is a one-to-one and onto map. Note that
u′′

0(x) vanishes at x = v0(p∞) with p∞ such that v′
0(p∞) = ∞, in view of u′′

0 ◦ v0(p) =
1/v′

0(p), i.e., at infinity in every direction of the complex plane.
Now, suppose there exists another function ϕ(x) in S0 such that ϕ(H) = �0. Then, ϕ−1 ◦

ux is a map from H onto itself, belongs to the class P and leaves the points 1/2, ζ0 and ζ0

fixed.4 As a consequence of (3.8), the Pick functions that map H onto H are linear fraction
transformations. Since the identity mapping is the only linear fraction transformation leaving
three points fixed, we infer that ϕ(x) and ux(x) are the same function. The complex root
ζ0 � −0.582687 + 0.720119i of the fixed point equation

v0(ζ ) = ζ + 2

2ζ 2
= ζ

is in �0, concluding the proof of Proposition 3.1. �

We now apply (3.13) to determine �t = ux(t,H) for t > 0. As ux(t, ζ ) solves v(t, η) = ζ

for η, with v explicitly given by (2.14), the domain �t can be easily plotted using Contour-
Plot or ImplicitPlot packages in Mathematica. Approximate expressions can be given for t

around 0 and ∞.

4The class of functions in P considered can be analytically continued across the real line by reflection (see
condition (iv) of St ). If ζ0 = x0 + iy0 ∈ H is a fixed point of f ∈ P then ζ0 = x0 − iy0 is a fixed point of its
extension.
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3.5 Domain Boundary

Each set �t of the family for t > 0 is bounded by a simple convex closed curve which is
piecewise analytic and defined by equation

(v(t, η)) = 0, η = p + iq ∈ H̄ (3.14)

where v(t, η) is analytically continued to the closure H̄ of the half-plane H. One has to be
careful, however, in order to get the actual domain since (v(t,p + iq)) > 0 may have more
than one component. Figure 4 shows level curves of (v(t,p + iq)).

For t small, �t is a slight deformation of S2(−2), by continuity:

(
p + 2(1 + 2t)

1 + 4t

)2

+ q2 <
4(1 + 2t)2

(1 + 4t)2
, q > 0.

Whereas, for t very large, �t approaches a folium (half-leaf) of Decartes:


(

2t
1 + p + iq

(p + iq)3

)
≥ 0, q > 0 ⇐⇒ 2p(p2 + q2) + 3p2 − q2 ≤ 0, q > 0.

We observe that the boundary of �t is the union of two curves: a line segment Iα :=
[−α,0] extending from a point −α = −α(t) < 0 up to the origin over the real line and a
convex curve q = h(t,p) defined for p ∈ Iα with h(t,−α) = h(t,0) = 0. From the above,
α(t) is a monotone decreasing function of t with α(0) = 4 and limt→∞ α(t) = 3/2 whereas

Fig. 4 (v(t,p + iq)) = c for t = 0.2 with c taking negative (dashed lines), positive (solid curves) and
neutral (thick solid line) values
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Fig. 5 Domain boundaries �t for t = n/4, n = 0, . . . ,9

h(t,p) is a semi-circular curve at t = 0: h(0,p) = √
4 − (p + 2)2 and approaches a limit

(half-leaf) curve

h∗(p) = lim
t→∞h(t,p) =

√
3p2 + 2p3

1 − 2p
.

Figure 5 shows domain boundaries for various t . Note that �t ⊂ �t ′ if t ′ < t with strict
inclusion along the convex arc.

The function h(0,p) and the turning point −α(0) = −4 are related to the density ρ(λ)

of the canonical representation (3.10) of u′
0(x) and its support �0,

ρ

(
1

p

)
= 1

4π

√
−4p − p2 = 1

4π
h(0,p), −4 ≤ p ≤ 0

by substituting λ = 1/p in (3.11). Note that �0 = �(0) = (−∞,−d(0)) in this case is such
that d(0) = (4α(0))−1 = 1/16.

To determine the support �(t) = (−∞,−d(t)) of the measure μ(t, dλ) = ρ(t, λ)dλ

of the canonical representation of ux(t, x) we look at the negative value −l(t) at which
vp(t,−l(t)) = 0. In the neighborhood of this point v is not univalent. Observe that l(t) and
the turning point α(t) coincide. Writing

v(t, η) = y(t,p, q) + iw(t,p, q), η = p + iq, (3.15)

by definition of α and Cauchy–Riemann equations, we have

0 = wq(t,−α(t),0) = yp(t,−α(t),0) = vp(t,−α(t))

which implies α(t) = l(t) by uniqueness. From Remark 2.7, we have −d(t) = v(t,−l(t)) <

−1/16 for all t > 0 and

−d(t) ∼ v(t,−3/2)

= 1

9
− 4

27
ln

(
1 + 3

2
(e2t − 1)

)
= −8

27
t + O(1),
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for t large enough, implies that the support �(t) of μ(t, λ) converges to an empty set:
�(t) = (−∞,−d(t)) → ∅ as t → ∞.

3.6 Riemann Surfaces

Contour plots of v(t, η), η ∈ C, for various t , show that ux(t, ζ ) is a multivalued function
of ζ ∈ C. Already at t = 0, u′

0(ζ ) has two Riemann surfaces connected by a branch cut
along the segment (−∞,−1/16] across which the imaginary part of u′

0(ζ ) change sign
(u′

0((−∞,−1/16]) is the semi-circular boundary of S2(−2)). The determination of
√· is

chosen such that −1/(1+√
1 + 16ζ ) is in P . For t > 0, ux(t, ζ ) has an even more elaborate

Riemann surface with three sheets. The first is connected with the second sheet by a branch
cut (−∞,−d(t)] while the latter is also connected to a third sheet by a branch cut (0, d1(t)]
with d1(0) = 0 and d1(t) → ∞ as t → ∞, which does not concern us as it doesn’t relate
to the limit function −1. The curves ux(t, (−∞,−d(t)]) and ux(t, (0, d1(t)]), which define
together with the real line boundaries of two domains, intercept the real line perpendicularly
at negative and positive values, respectively. Figure 6 shows these curves for various t . The
region bounded by ux(t, (0, d1(t)]) inside the half-plane H is denoted by �t . Note that,
opposed to �t , �t are open domains satisfying inclusions �t ⊂ �t ′ if t < t ′.

3.7 Flow in the Pick Class

It is very difficult to show directly from the flow equation that ux(t, ζ ) remains in the Pick
class of functions for all t > 0 by general principles. However, for initial condition in P

that belongs to the class S0 there is a simple property of the flow equation that explains
why the Pick class P is preserved. Writing v0(η) = y0(p, q) + iw0(p, q) as a function of
η = p+ iq ∈ �0 ∪�∗

0 ∪Iα(0), with �∗ the reflection of � about the real axis, if the imaginary
part w0(p, q) is an odd function of q then the flow equation (2.11) preserves this property.
Writing v(t, η) as (3.15), we have

w(t,p, q) = −w(t,p,−q)

holds for all t ≥ 0 and η ∈ �t . By continuity, it follows that �t ⊂ H and that v(t, η) remains
a one-to-one and onto map from �t to H and these imply that ux(t, ζ ) belongs to the class
St in P .

To establish uniqueness of the relationship between O(u′
0 → −1) and the image do-

mains {�t, t ≥ 0}, we proceed as in t = 0 (see proof of Proposition 3.1). Supposing that

Fig. 6 Domain boundaries �t and �t for t = n/4, n = 0, . . . ,9
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Fig. 7 Scaling evolution of fixed points and domain images of ux(t, ζ )

ϕ(t, ζ ) ∈ St is a different function satisfying ϕ(t,H) = �t , for each t fixed ϕ−1 ◦ ux(t, ζ )

maps H into itself and leaves the point 1/2, ζt and ζ ∗
t fixed where ζ ∗

t = ζ̄t for t < t∗ �
5.155075 and for t ≥ t∗ the last two fixed points become real numbers (see Fig. 7). Extend-
ing the functions in St across the real line by reflection, ϕ−1 ◦ ux(t, ζ ) is a linear fraction
map with three fixed points which contradicts the hypothesis that ux(t, ζ ) and ϕ(t, ζ ) are
different. This holds for all t such that ζ ∗

t ∈ �t ∪ �∗
t ∪ Iα(t). If this condition is not satis-

fied, we apply Schwarzian reflection [4] about the curve h(p) in order to extend ux(t, ζ )

to the complex plane in such way that ux(t,H) = �t and ux(t,−H) = H\(�t ∪ �t) and
this insures that ζt and ζ ∗

t , which are now real values, remain fixed points of ux(t, ζ ) when
ζ ∗
t < −α(t). The value tco that ζ ∗

tco
= −α(tco) is called crossover scale from strong to weak

(coupling) regime, term introduced in [11].
The canonical representation of ux(t, ζ ) is not suitable for describing the trajectory

O(u′
0 → −1). From the characteristic equations (2.16) of (2.11) one find that the point

(p,V ) = (−1,1/2) is a critical point for the two-dimensional dynamical system:

(ṗ, V̇ ) = (−2p(1 + p),−1 + (6 + 4p)V ) := (F1(p,V ),F2(p,V )) (3.16)

with F1(−1,1/2) = F2(−1,1/2) = 0. As (−1,1/2) is an invariant point we have v(t,−1) =
1/2 and, accordingly, ux(t,1/2) = −1. Instead of fixing b in the canonical representation
(3.8) the value of f at ζ = i, we write

ux(t, ζ ) = −1 +
∫ ∞

−∞

(
1

λ − ζ
− 1

λ − 1/2

)
dμ(t, λ). (3.17)
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Note that, by hypothesis,
∫ ∞

−∞[(λ− ζ )(λ− 1/2)]−1dμ(t, λ) < ∞ and as the support �(t) =
(−∞,−d(t)) of μ(t, λ) converges to ∅ the integral in (3.17) converges to 0 uniformly in
each compact set O ∈ H.

The following summarizes our findings.

Proposition 3.2 ux(t, ζ ), t > 0, map the upper half-plane H conformally into a decreasing
family of open convex sets �t satisfying

�t = ux(t,H) ⊂ u′
0(H) = �0

and no other function in St maps H into �t . There is a one-to-one and onto relation between
this family and the trajectory O(u′

0 → −1) at the critical inverse temperature β = βc(4) = 4.
The geometric description together with the integral representation of ux(t, x) gives the
distribution dμ(t, λ) of the Lee–Yang zeroes at the scale t . �∞ is a nonempty set and a
nontrivial limit distribution is attained but its support �(t) is pushed away from the origin
to infinity.

4 Normal Fluctuations

We turn our attention to normal fluctuations. The block variable (1.8) is now normalized
with γ = d and the system is above the critical temperature. The “a priori” measure σ

(N)
K (x),

LdK = n, that governs the law of (1.8), satisfies a recursive equation

σ
(N)
k (x) = 1

Ck

eL−2k(L−1)|x|2/2σ
(N)

k−1 ∗ · · · ∗ σ
(N)

k−1︸ ︷︷ ︸
Ld-times

(Ld/2x) , k ≥ 1

which, in view of γ = d , has an explicitly k dependence in the exponential pre-factor
(see (1.3)).

4.1 Initial Value Problem

Following the procedure described in Sect. 1, the initial value problem (1.12) and (1.13), for
the logarithmic of its characteristic function φ

(N)
k (z) in the L ↓ 1 limit, thus reads

Ut = −1

2
e−2t (�U − |Uz|2) + dU − γ

2
z · Uz + 1

2
e−2t�U(t,0). (4.1)

Note that, L−2k = exp(−2k lnL) → exp(−2t), as k → ∞ together with L ↓ 1 with k lnL =
t fixed, and such function appears in front of the Laplacean in (1.6).

As N → ∞, the radially symmetric solution of (4.1) scaled properly satisfies the modi-
fied initial value problem (see (1.15) for the definition of u(t, x)):

ut = e−2t ux − 2xe−2t u2
x − γ xux + du − e−2t ux(t,0) (4.2)

with u(0, x) = u0(x) given by (2.3).
We continue through (2.5)–(2.10). A similar Legendre transform applied to (4.2) leads to

the initial value problem

vt − 2p2e−2t vp = −e−2t + (d + 4e−2tp)v (4.3)

with v(0,p) = v0(p) as given by (2.12). Note the cancellation of terms proportional to pvp

because γ = d in this case.
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4.2 Main Result

The following result holds for any d > 2 but has been stated for d = 4, for simplicity.

Theorem 4.1 Equations (4.3) and (2.12) with d = 4 are solved by

v(t,p) = −e4t

p2

(
1 − β

4
+ 1

p
ln(1 − p + pe−2t ) + e−2t (ln(1 − p + pe−2t ) − 1) − p

2
e−4t

)
.

(4.4)

For every β < βc(4) = 4 and t ≥ 0, there is a unique solution p̄ = p̄(t, x) of

v(t,p) = x, (4.5)

holomorphic in a neighborhood of the origin, that converges exponentially fast, as t → ∞,
to the solution of

1 − β

4
= −1

p
ln(1 − p)

in every compact set of C. This implies, together with the corresponding equations (2.10)
and (2.1), convergence to a Gaussian equilibrium solution of (4.1) without terms propor-
tional to e−2t :

lim
t→∞ lim

N→∞
1

N
U(t,

√
Nz) = −|z|2

2μ(β)
(4.6)

uniformly in compact subsets of −|z|2 ∈ C.

Proof As in the proof of Theorem 2.2, (4.3) will be solved along the characteristics p(t;p0).
We refer to this proof for details. Writing V (t) = v(t,p(t)), we have

ṗ = −2e−2tp2,

V̇ = −e−2t + (d + 4e−2tp)V
(4.7)

with initial conditions (2.17). Integrating the first of these equations gives

p(t) = p0

1 + p0 − p0e−2t
. (4.8)

The homogeneous equation V̇ = (d + 4e−2tp)V can be integrated analogously as before

V (t) = V0e
dt (1 + p0 − p0e

−2t )2.

Using the variation of constants formula, the solution to the second equation of (4.7) is given
by

V (t) = edt (1 + p0 − p0e
−2t )2(V0 − J0) (4.9)

with

J0 = 1

2

∫ 1

exp(−2t)

ζ d/2dζ

(1 + p0 − p0ζ )2
.
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At this point, notice that J0 for d = 4 is exactly as in the proof of Theorem 2.2. Equations
(2.17), (2.12) together with the integration of J0 gives

V0 − J0 = (2.20).

The difference between the two cases is the exponential pre-factor edt of (4.9) and p0 =
p0(t,p) which is now obtained by solving (4.8) for p0:

p0(t,p) = p

1 − p + pe−2t
. (4.10)

As we shall see, these two differences are responsible for the converge of trajectories to
different stationary solutions.

Equation (4.4) follows by plugging (2.20) into (4.9) with p0 given by (4.10).
We now solve (2.15) for p at β �= βc = 4 which, by (2.14), can be written as

(
xp2 − p

2

)
e−4t − e−2t = −1 + β

4
−

(
e−2t − 1

p

)
ln(1 − p + pe−2t ) ≡ g1(t,p). (4.11)

Analogously to Lemma 2.5, we have

Lemma 4.2 For any p < (1 − e−2t )−1, g1 is a monotone increasing function of p with
g1(t,0) = −e−2t + β/4 and diverges logarithmically to −∞ as p → −∞.

Proof of lemma g1 is a monotone increasing function of p since

(g1)p(t,p) = e−2t (1 − e−2t )

1 − p(1 − e−2t )
+ 1

p2
f (p(1 − e−2t ))

with f given by (2.22) is a positive function for p < (1 − e−2t )−1. Other statements follows
as in the proof of Lemma 2.5. �

The quadratic polynomial Q1(x,p) in the left hand side of (4.11) tends to a linear func-
tion Q1(0,p) = −e−2t (1 + pe−2t /2) as x → 0 with Q1(0,0) = −e−2t and Q1(0,−2e2t ) =
0. From Lemma 4.2, the graph of g1 always intercepts the graph of Q1(0,p) for all β > 0
and, as in the proof of Theorem 2.2, this implies the existence of a unique solution p̄(t, x)

of (4.5) for every t ≥ 0, holomorphic in a neighborhood U(t) of the origin that becomes the
entire complex plane U(t) → C as t → ∞. Details of the proof will be omitted since are
similar to the corresponding statements in Theorem 2.2.

Asymptotic Expansion The asymptotic behavior of p̄(t, x) as t → ∞ is given as follows.
By (4.11), p̄(t, x) converges exponentially fast

p̄(t, x) = p̂

(
1 + 4(p̂ + 2)

β − 4p̂(4 − β)
e−2t + O(e−4t )

)

to a constant value p̂ which solves

1 − β

4
= −1

p̂
ln(1 − p̂) ≡ h1(p̂). (4.12)
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Since h1 is a monotone increasing function of p̂ < 1 with h1(0) = 1 and h1(p̂) ↗ 0 as
p̂ → −∞, there is a unique strictly negative solution of (4.12) for all 0 ≤ β < 4. Comparing
(4.12) with (1.10), we have

p̂ = 1

2μ(β)

which together with (1.11), (2.1) and (2.10), yields (4.6) and concludes the proof of Theo-
rem 4.1. �

5 Conclusions and Final Remarks

In the present work, a continuous version of the hierarchical spherical model at dimension
d = 4 has been investigated. The two main results are Theorems 2.2 and 4.1 on the limit dis-
tribution of the block spin variable Xγ normalized with exponent γ = d + 2 at the criticality
and γ = d above the critical temperature. To prove these results, certain evolution equa-
tions corresponding to the renormalization group transformation (1.6) in the limit L ↓ 1 are
solved explicitly at N = ∞. Starting far away from the stationary Gaussian fixed point the
trajectories of these dynamical system pass through two different regimes with distinguish-
able crossover behavior. The large-N limit of the transformation (1.6) with Ld fixed equal
to 2, at the criticality, has been investigated in both weak and strong (coupling) regimes by
Watanabe [21]. We mention that our analysis using the L ↓ 1 limit equation is considerably
simpler and, consequently, has more details than Proposition 2.2 in [21].

Theorem 3.2 gives an interpretation for the above mentioned trajectories using the geo-
metric function theory. The methods used enable us to describe the dynamics of the Lee–
Yang zeroes along those trajectories. As N → ∞, the Lee–Yang zeroes becomes dense over
a semi-line and their measure, which depends on the scale parameter t , is shown to reach
a limit for t large but the support of the limit measure is pushed away to infinity as the
trajectories approach the Gaussian fixed point. The method also allow us to give the pre-
cise crossover scale tco > t∗ from strong to weak regime defined as the value of t such that
ζ ∗
t = −α(t) where ζ ∗

t is a fixed point of the function (2.14) that solves (2.11) and −α(t) is
a point of the boundary of image domain �t .

There are, however, two major drawbacks in the L ↓ 1 limit equation of the hierarchical
O(N) Heisenberg model with N finite. Firstly, reflection positivity cannot be used to prove
uniform convergence of the O(N) trajectories to O(∞) trajectories.

The other problem is related with the Lee–Yang property (for definition, see [15, 18]).
A Borel measure ρ in R

N possesses Lee–Yang property if its characteristic function φ(z) =∫
dρ(x) exp(iz · x) belongs to the Laguerre class L of entire function of ζ = −|z|2 ∈ C

which can be represented by

f (ζ ) = exp(λζ )

∞∏
k=1

(
1 + ζ

α2
k

)
(5.1)

with λ ≥ 0 and 0 < α1 ≤ α2 ≤ · · · real numbers satisfying
∑∞

k=1 α−2
k < ∞. Hence (see [11,

19, 21])

h(ζ ) = −ζ(lnf )′(Nζ) =
∞∑

j=1

(−1)j ν2j ζ
j (5.2)
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is holomorphic function of ζ in a neighborhood of the origin and Newman’s inequalities

0 ≤ ν2j ≤ (ν4)
j/2 (5.3)

holds for all j ≥ 2. The scaling (5.2) is chosen so that ν2j = O(1) in N for j ≥ 1 if ρ is the
uniform measure on the sphere of radius

√
N . Inequalities (5.3) holds in the limit N → ∞

but in this case f cannot be represented by (5.1) as the zeroes (αj )j≥1 become dense over
the real line.

In order to include the N → ∞ case the Lee–Yang property needs to be modified as
follows. Let J denote the set of probability measures � on R defined by

φ�(ζ ) =
∫

eiζ sd�(s) :=
(∫

eiζλ·xdρ(x)

)−1/N

= eu(ζ )

for some O(N) invariant measure ρ on R
N possessing Lee–Yang property and λ ∈ R

N . No-
tice that u′(ζ ) belongs to the Pick class of functions satisfying (3.8) for some discrete mea-
sure μ. Let J̄ be the closure of J with respect to uniform convergence of φ�(ζ ) in compact
subsets of H (the natural topology of Pick functions).5 Then φ�(ζ ) is a infinitely divisi-
ble characteristic function [5] and u(ζ ) is a completely monotonic function, (−1)nu(n)(ζ )

on the semi-axis ζ ≥ 0 [6] and each is necessary and sufficient for the other. Using the
integral representation (3.8) of u′(ζ ) or Kolmogorov’s representation theorem for u, (5.3)
can be verified. The present definition can be extended to accommodate the L ↓ 1 limit
since it has to be taken together with the thermodynamic limit and De Coninck’s results on
Lee–Yang property and infinitely divisible characteristic function [5] can be applied. The
solution u(t, x) of (2.4) studied in the present paper defines, in this way, a one parameter
family of characteristic functions exp(u(t, x)) of probability measures in J̄ that converges,
at the critical inverse temperature, to exp(−x).

Now, let

fk = Tfk−1, k = 1,2, . . .

where T : E −→ E is the operator defined by recursion relation (1.6) with f (ζ ) = ϕ(|z|) =
φ(z), ζ = −|z|2, be a sequence in the space of entire functions E starting from f0(βζ ) with
f0 in the Laguerre’s class L. It has been proven in Theorem 1.2 of [16] that, for every k ∈ N

and 0 ≤ β ≤ (Lγ−d − 1)/λ,

fk ∈ L∩Aλ

where Aa denotes the Fréchet space of functions f ∈ E such that

‖f ‖b := sup
k∈N

1

bk

∣∣∣∣d
kf

dζ k
(0)

∣∣∣∣
is finite for all b > a and λ is the type of f0. This together with (5.3) can be used to establish
the existence of a critical inverse temperature βc such that the sequence {fn}n∈N converges
to exp(ζ ) uniformly in compact subsets of C. The Pick class of functions is the natural
candidate for replacing Laguerre’s class in the local potential approximation of (1.6). The
present work is the first attempt in this direction for N = ∞.

5We do not assume the condition |φ�(ζ )| ≤ C exp(c|ζ |) in the closure as it is required in [18] for the set of
measures whose characteristic function is given by (5.1).
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